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We present a strategy for comparing the global properties of competing potential models. By systematically
sampling the potential energy surface of crystalline tetracene, we assess how the number, energy and structure
of its minima are modified by switching on (or off) the Coulombic interactions. The increased complexity of
the Coulombic potential leads to a more “rugged” potential energy surface with a larger number of minima,
but the effect is not large. In fact, we find a subset of minima stable only in presence of the Coulombic
interactions, a smaller subset stable only in their absence, and a large majority stable in both cases. Among
these, there is a very good, but not perfect, correlation between the energies and the structures computed with
and without the electrostatic interactions. Although electrostatic interactions play a role even in a rigid nonpolar
molecule such as tetracene, they are not as crucial as often believed, because altering the electrostatic model
(or switching it off completely) leads, in most cases, to equivalent results.

1. Introduction

The prediction of the crystal structure of an organic compound
given its chemical formula is a very challenging problem, as
shown by the surprisingly few successful predictions identified
in a survey by Price and co-workers1 or listed in the on-line
database maintained by the same group.2 Because failed
calculations are likely to go unreported, actual successes might
be even less common than suggested by these surveys. A more
objective assessment of the current state of the art is given by
the blind tests conducted by the Cambridge Crystallographic
Data Centre in 1999, 2001, 2004 and 2007.3-6 Each test involved
several research groups, which were invited to submit predic-
tions for a handful of given compounds. The success rate using
classical potential models was quite low and, disappointingly,
improved only slightly in the later tests.7

In the basic prediction strategy, adopted by most researchers,
one starts from a molecular model, generates several thousands
of different crystalline arrangements, and selects structures
according to their lattice energy, calculated with one of the many
available potential models. Although entropic and kinetic factors,
besides the potential energy, may also play a role during the
crystallization process, it is widely believed that the choice of
an accurate and reliable potential model remains the most
important unsolved issue3,7-10 in structure predictions. The
electrostatic part of the potential model, in particular, has
received much attention. Many different representations have
been proposed, including point charges, located on the atoms11-13

or on additional sites,14,15 and multipoles, located on the
molecular center of mass16 or distributed on the atoms.17 Atomic

multipoles and charges are most often obtained by least-squares
fits to the ab initio electrostatic potentials. When additional
charged sites are used, the least-squares problem presents
multiple solutions, requiring stochastic methods14,15 to find
acceptable positions and charges of the sites.

Because of their perceived importance, we have decided to
assess the actual effect of the electrostatic interactions by
investigating whether switching them on (or off) alters the
potential minima. Some hints on the possible role of the
electrostatic interactions come from investigations on known
crystalline polymorphs. A well studied case1,9,10,18-20 is that of
benzene, which presents orthorhombic and monoclinic poly-
morphs, the former of which, being experimentally stable at
lower temperatures and pressures, is the most bound one. An
analysis19 of published potential models indicated that only a
few models,21-23 all including electrostatic interactions, yield
the correct energy order for the two polymorphs. All successful
calculations for benzene reported in the previously mentioned
review1 or in the more recent literature9,10,20 also include
electrostatic interactions. The energy order is apparently affected
only by the presence (or absence) of the electrostatic interactions
andnotbytheir representation,whichcoversatomiccharges,9,10,20,21

a single quadrupole at the molecular center22 and distributed
quadrupoles.23 The dependence on the electrostatic model
appears to be quite weak, because changes in the potential affect
mainly the energy of the minima, with minor influences on their
structures. In fact, the example of benzene suggests that
crystallographic structures are remarkably resilient to changes
in the electrostatic model, even when these have significant
effects on the energies.9,10,18 These indications are reinforced
by the observation that we could not readily find other
compounds for which including (or excluding) the electrostatic
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interactions reshuffle the energy order of the experimental
polymorphs. In a previous investigation24 on tetrathiafulvalene
(TTF), for example, we found no energy reshuffling of theR
andâ polymorphs when including the charges.

The information provided by these calculations, although quite
intriguing, is limited to the structures of a few experimental
polymorphs. More information may be obtained by sampling
the overall distribution of potential energy minima, as we have
recently done to identify the possible polymorphs of pentacene
and tetracene, which both experimentally present at least two
forms (high- and low-temperature polymorphs, respectively).25,26

A surprisingly large number of distinct minima, with a variety
of structural arrangements, was identified. For each compound
the two deepest minima identified by sampling were found to
correspond to the two experimental polymorphs, which were
reproduced very satisfactorily. Of course, these results depend
on the potential model chosen for the calculations, which for
tetracene26 was an atom-atom potential plus Coulombic
interactions represented by atomic charges. We have now
repeated the calculations for tetracene after removing the
charges, to investigate the resulting changes in the distribution,
identity and order of the energy minima. In fact, we have thus
partially assessed the reliability of our published results for
tetracene. Besides the interest for this specific molecule, we
aim to investigate the role of the electrostatic interactions for a
typical molecular crystal. Our conclusion that electrostatic
interactions in crystalline tetracene are not as crucial as often
believed (section 4) is probably valid also for other nonpolar,
rigid molecules.

To provide a broader context for our investigation, we wish
to emphasize that tetracene, like benzene, pentacene, TTF and
many other molecular crystals,19,24-26 presents several crystalline
polymorphs, stable in different temperature and pressure ranges.
Because of this, although most energy minimization calculations
focus only on discovering the global minimum (which corre-
sponds to the stable polymorph at low temperatures and
pressures), we also seek the next few minima, which ought to
correspond to further polymorphs. In fact, the properties and
stability range of the various competing polymorphs, although
outside the scope of the present work, can be accurately
predicted19 by computing the Gibbs free energy as a function
of pressure and temperature, with quasi harmonic lattice
dynamics (QHLD) methods.

2. Calculations

The calculation of the possible structures of minimum energy
for crystalline tetracene has been discussed in the previous
paper.26 The tetracene molecules were treated as rigid units,
with the ab initio geometry computed with a 6-31G(d) basis
set in combination with an exchange-correlation functional
B3LYP,27,28interacting through an intermolecular potentialΦ′.
This was represented by an atom-atom Buckingham model29

with Williams parameter set IV,30 combined with Coulombic
interactions described by atomic charges derived from theab
initio electrostatic potential (ESP charges).27 ESP charges and
ab initio geometry are shown in the inset of Figure 1. An
optimally uniform quasi-random sampling method, known as a
low-discrepancy Sobol’ sequence,31 was used to generate 2500
initial structures. Starting from each of these structures, we
minimized the total potential energyΦ′ by adjusting cell axes,
cell angles, positions and orientations of the molecules. We then
checked the vibrational frequencies of the lattice, which must
be real and positive at the local minima of the energy. The
structures at the minima were finally analyzed32,33 to identify

their space group, a step which occasionally involved cell
halving or doubling to obtain a conventional cell.

As a first quick test of the importance of the Coulombic
model, we re-ranked the potential minima of tetracene after
replacing the ESP charges with the Mulliken charges27 (without
structural optimization). We found a very high correlation
between the energies computed with the two charge models and,
furthermore, there were no changes in the order of the deepest
minima. Because Mulliken charges provide a poor representation
of the electrostatic interactions (especially in comparison with
the ESP charges), these results confirm that the details of the
electrostatic model may be unimportant. In a second phase we
have altogether eliminated the electrostatic interactions and
repeated the complete calculations for tetracene, starting from
exactly the same initial configurations26 and using the identical
methods, with a potentialΦ′′ identical to Φ′, but with zero
charges. Once identified all minima, we have compared them
using a mapping procedure which allow us to discover the
relationships between the minima of the Coulombic and non-
Coulombic potentialsΦ′ andΦ′′ (Section 3).

3. Results

3.1. Mapping between Minima.As just discussed, we have
sampled 2500 different configurations, each used as the starting
point of two independent steepest descent energy minimizations,
one with the Coulombic interactions and another without them.
The configurations which failed to converge to compact and
stable bound states (≈30% in both cases) were discarded, and
all structures encountered more than once were identified. The
efficiency of the search process is analyzed in Figure 1, where
we show the number ofdistinctminima encountered during the
search as a function of the number of initial configurations,
separately for the Coulombic and the non-Coulombic potentials.
It can be seen that by increasing the coverage of the search
space we approach a saturation plateau where new configura-
tions tend to fall more and more frequently into previously
encountered minima. This behavior indicates that a large part
of the accessible minima has already been encountered, because
to find new distinct minima becomes progressively more
difficult. Although thetotal number of minima (either distinct
or not) is essentially the same in the two cases, the saturation
is slower for the Coulombic case, where we encounter a larger
number of distinct minima. The Coulombic potential surface

Figure 1. Number of distinct potential minima as a function of the
number of initial configurations for the Coulombic and non-Coulombic
potentials, as indicated in the figure. Inset: molecular geometry of
tetracene (C18H12, planar withD2h symmetry) and ESP charges (eunits,
drawn near the atoms). Chemically equivalent atoms have identical
charges. Molecular graphics by MOLSCRIPT.34
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appears more rugged, with a larger number of “attraction
basins”.

This suggestion, which implies a comparison between the
minima computed with and without the Coulombic interactions,
assumes a very clear meaning if we follow the procedure
mentioned in Section 2 to obtain a mapping between Coulombic
and non-Coulombic minima. To simplify the discussion, we
label the Coulombic minima asN′ ) 1′, 2′, 3′, ..., in order of
increasing energy, and indicate as{N′} the set of all such
minima. Analogously, we use the labelsN′′ ) 1′′, 2′′, 3′′, ...
and the set{N′′} for the non-Coulombic minima. Starting from
the structures of all distinct Coulombic minima{N′}, we
minimize the energy after removing the charges. Structures
usually converge to previously encountered non-Coulombic
minima in {N′′}, thus confirming that most of the accessible
minima have already been identified. We also find some new
non-Coulombic minima, which are added to{N′′}. Starting from
this newly extended set{N′′}, we repeat the minimization in
the opposite direction, after including the charges, and add any
new Coulombic minima to{N′}. No new minimum appears after
a second iteration of the process, leaving us with 342 Coulombic
and 298 non-Coulombic minima.

This procedure yields a mapping in which each minimum in
{N′} converges to a minimum in{N′′}, and a second mapping
in the opposite direction. Both mappings are “many-to-one”;
i.e.,several minima in a set may converge to a single minimum
in the opposite set. Subsets for which the mapping is “one-to-
one” also exist. In these subsets each minimumN′ of Φ′ falls
onto a minimumN′′ of Φ′′ andVice Versa. In these cases we
considerN′ and N′′ as a matched couple of minima. On the
contrary, no matching partner exists forN′ whenN′ falls onto
a minimumN′′ that does not fall back toN′.

As an example of the information thus obtained, we represent
in Figure 2 part of the mappings involving some of the deepest
minima. It can be noticed that the Coulombic minimum 1′
converges to the non-Coulombic minimum 1′′ andVice Versa;
i.e., each of the two partners falls in the attraction basin of the
other one. Thus, 1′ and 1′′ effectively represent matched partners
which, as discussed in section 3.3 below, exhibit small structural
differences due to the different potentials. The non-Coulombic
minimum 10′′, instead, has no matching Coulombic partner in
{N′}, because it converges to 4′, whereas 4′ does not go back
to 10′′. In the opposite direction, the same happens for 22′, which
has no matching partner in{N′′}.

This analysis allows us to identify all matched couples of
Coulombic and non-Coulombic minima, plus the remaining
Coulombic or non-Coulombic minima without a matching
partner in the opposite set. If the Coulombic interactions are
switched off or on, respectively, these minima without a partner
loose their stability and disappear by falling toward distant
attraction basins. By completing the analysis, we find 96 minima
stable only in the presence of the Coulombic interactions, 52
minima stable only in their absence, and a majority of 246
minima stable in both cases. Thus, adding the Coulombic
interactions not only increases the complexity of the potential,
leading to the expected larger number of minima, but also
destabilizes several non-Coulombic structures. For the majority
of minima, nevertheless, switching on (or off) the Coulombic
interactions does not affect the stability, although it may well
modify the energy rank or the structure.

3.2. Energy of the Minima.To further investigate the effects
of the Coulombic interactions, we have compared energies and
crystallographic structures of the partners in all theN ) 246
matched couples of Coulombic and non-Coulombic minima. In

Figure 3 we show directly the energyΦ′ of one partner as a
function of the energyΦ′′ of the matching partner. Although
the energiesΦ′ andΦ′′ are generally correlated, with a linear
correlation coefficient31 r ) 0.888, their energy ranks have been
reshuffled, because the data points (Φ′, Φ′′) do not follow a
strictly monotonous curve. Minima without a matched partner,
in comparison, exhibit no energy correlation with the minima
on which they fall (r ) 0.317).

Figure 2. Mapping between Coulombic and non-Coulombic minima
N′ andN′′ (involving the five deepest minima). Minima are represented
by points, labeled by the energy rankN′ or N′′ and drawn at an ordinate
that corresponds to the energy (with small shifts to avoid overlaps).
The arrowN′ f N′′ indicates thatN′ converges toN′′, whereas N′ T
N′′ indicates thatN′ converges toN′′ andVice Versa.

Figure 3. Energy of the Coulombic minima as a function of the energy
of the matching non-Coulombic minima.
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The linear correlationr is a ratio between statistical moments
and, for the purposes of predicting the relative stability of
different structures, does not really represent an appropriate
measure of the importance of the rank reshuffling. What actually
matters is the agreement (or not) between the relative order of
the energies of any two couples of matched minima with or
without the Coulombic interactions. For example, going back
to Figure 2, the two deepest matched couples (1′, 1′′) and (2′,
2′′) have the same order (i.e., Φ1′ < Φ2′ and Φ1′′ < Φ2′′),
whereas the two matched couples (3′, 4′′) and (8′, 3′′) have
opposite order (i.e., Φ3′ < Φ8′ andΦ4′′ > Φ3′′). Judging from
Figure 2, this seems to be the exception, rather than the rule. In
fact, by considering allN(N - 1)/2 ) 30 135 pairs of matched
couples, we find thatΦ′ andΦ′′ have the same order in 25638
cases,i.e., with a rather high probabilityp ) 0.851. Other
possible statistical measures of the correlation between the ranks
of two variables are discussed in the literature on the Kendall’s
τ.31 For readers who preferτ to a probabilityp, it suffices to
say that because we encounter no energy ties,τ ) 2p - 1 )
0.702.

In the previous investigation on the possible structures of
tetracene26 it was found that the two known tetracene poly-
morphs correspond to the two deepest Coulombic minima 1′
and 2′. As shown in Figure 2 and as we had already noticed,26

1′ and 2′ also match the two deepest non-Coulombic minima
1′′ and 2′′, respectively. This satisfactory finding implies that
the absolute and relative stability of the two polymorphs is
independent of the presence or absence of the Coulombic
interactions in the potential model. The result thatΦ′ andΦ′′
yield the same energy order, with high probability, indicates
that this independence of the potential extends to most, although
not all, pairs of matched couples.

3.3. Structure of the Minima. The properties of the
Coulombic minima have been discussed in the previous paper,26

which describes the crystallographic structures of several deep
minima and presents an analysis of the statistical distribution
among the various space groups. Because the analogous
information for the non-Coulombic minima is almost identical,
we will not report it here. This similarity is not due to chance,
because we have found that the crystallographic structures of
all the N ) 246 couples of matched Coulombic and non-
Coulombic minima are closely related. In fact, the two matching
partners always belong to the same space group and have the
same numberZ of molecules in the unit cell, and the same site
symmetry; i.e., they belong to the same structural class as
defined by Belsky.35,36 Furthermore, the correlation between
their densities, like that between the unit cell axes, is extremely
high (r ) 0.997, in both cases). For the deepest minima, we
also find that matching Coulombic and non-Coulombic struc-
tures have essentially the same unit cell angles. However, this
correspondence does not extend to all couples of matching
minima, because the overall correlation between the cell angles
is poor (r ) 0.642). This apparent discrepancy is not significant,
because the cell angles can be chosen in many different ways
and are notoriously unreliable37 when comparing structures. To
overcome this problem, we have adopted the distance compari-
son method38 used in the blind tests3,5 to compare experimental
and computed structures. For each structure of interest, one
considers a spherical coordination shell, containing a reference
molecule and at least 14 neighboring molecules, and then lists
all interatomic distances between the reference molecule and
its neighbors. Structures are finally compared by computing a
root-mean-square deviation (RMSD) between their lists of
distances. In the blind tests it has been found that correct

predictions have distances whose RMSD from the experimental
distances is typically below 1.0 Å, which may be considered
as the “standard” accuracy of this kind of calculations.5 In our
computations for tetracene we find that the RMSD between
Coulombic and non-Coulombic partners is always very small
(0.11( 0.08 Å on the average, with a maximum RMSD of 0.5
Å). All pairs of matching partners thus would be considered
identical structures in a blind test.

4. Discussion and Conclusions

We have assessed how the number, energy and structure of
the potential minima of crystalline tetracene are modified by
switching on, or off, the electrostatic interactions. In both cases,
the nonelectrostatic part of the intermolecular potential is
represented by an atom-atom Buckingham model,29 with
Williams parameter set IV.30 The electrostatic interactions, when
present, are described by atomic charges derived from theab
initio electrostatic potential.27 Adding or subtracting the Cou-
lombic interactions, while leaving unchanged the remaining
atom-atom interactions, clearly is a very crude procedure. In
fact, potential parameters are usually derived from the outset
with a specific electrostatic model (including the “null” model),39

and may thus partially compensate for the presence or absence
of explicit electrostatic interactions.7,39Our procedure, in which
no compensation is possible, deteriorates the starting model and
thus tends tooVerestimatethe computed effects of the electro-
static interactions.

By separately sampling a large number of initial configura-
tions on the Coulombic and on the non-Coulombic potential
energy surfaces, we have identified a large fraction of their
minima. Starting from these, we have then investigated the
natural mapping in which each Coulombic minimum converges
to a non-Coulombic minimum, orVice Versa, when the
electrostatic interactions are switched off or on, respectively.

We have thus noticed a number of interesting features,
probably transferable to other similar molecular crystals. (1)
Crystalline minima on the Coulombic and non-Coulombic
surfaces are equally “accessible”;i.e., the number of initial
configurations that successfully converge to compact and stable
bound states is the same in the two cases. (2) The increased
complexity of the Coulombic potential leads to a more “rugged”
surface, with a larger number of distinct minima. As a
consequence, there is subset of minima stable only in presence
of Coulombic interactions. When electrostatic interactions are
switched off, these purely Coulombic minima loose their
stability and fall toward distant non-Coulombic minima. (3) The
opposite case, with minima stable only in absence of the
Coulombic interactions, also occurs, but is less frequent. (4) In
the majority of cases, the stability of the minima is not affected
by the presence or absence of the electrostatic interactions. Most
minima form matched Coulombic and non-Coulombic couples
in which each of the two partners falls in the attraction basin of
the other one (with the appropriate potential). Matched partners
exhibit a high degree of similarity, having identical crystal-
lographic and site symmetries and, without exceptions, very
close molecular arrangements. Furthermore, the relative energy
order of Coulombic and non-Coulombic partners is, with high
probability, the same.

The notion that electrostatic interactionsmaybe an important
ingredient in the description of molecular crystals is justified,
because they play a role even in nonpolar molecules such as
tetracene or benzene. However, electrostatic interactions are not
as crucial as often believed, because switching them off leads,
in most cases, to equivalent results. At least for rigid and highly
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symmetric molecules such as benzene or tetracene, all the
attention given to the choice among alternative electrostatic
models is probably not warranted, because just about any model
would give equivalent results. This is definitely the case for
TTF or tetracene, because the energy ranks of their deepest
minima, and thus of the corresponding experimental poly-
morphs,24,26 do not depend on the presence of the electrostatic
interactions. From this point of view, benzene is an exceptional
case, in which the presence (or absence) of electrostatic
interactions reshuffles the predicted energy rank of the experi-
mental polymorphs. Even for this exceptional case in which
electrostatic interactions reshuffle the energy rank, the effects
on the computed lattice parameters of the experimental poly-
morphs are not important.9,10,18

Our investigation is based on an analysis of the local minima
of the potential energy. The local minima represent the possible
configurations ofmechanical equilibriumand thus constitute
the “natural” or “inherent” structures40 that the system can
exhibit. This concept suggests a natural mapping between
different potentials, in which the minima of a first potential
model converge to the minima of a second model. We have
found that this mapping provides a simple, yet powerful, method
for comparing theglobal properties of competing potential
models. The comparison includes, but is not restricted to, the
standardlocal comparison between the computed properties of
a few experimentally known crystalline forms.
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